Limits

Limit exists, function not exist

- $f(x)$ undefined at $x=2$
- $f(x)$ is not continuous at $x=2$
- the limit does exist at $\boldsymbol{x}=\mathbf{2}$
$L H L=R H L=\lim$
\lim
$\lim f(x)=3$

Limits

Limit=function \Rightarrow continuous

- $f(x)$ is defined at $x=2, f(2)=3$
- $f(x)$ is continuous at $x=2$
- the limit does exist at $\boldsymbol{x}=\mathbf{2}$
$L H L=R H L=\lim _{3}$
\lim
$\lim f(x)=3$

Limits

Limit \neq function \Rightarrow not continuous

Limits

Limits and continuous functions

- If $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{a}$ then the

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

\Rightarrow this means that if a $f(x)$ is continuous at $x=$ a then to find the limit of $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=$ a you only need to evaluate $\mathbf{f}(\mathbf{x})$ at $\mathrm{x}=\mathrm{a}$.
i.e. to find $\lim _{x \rightarrow a} f(x)$ when $f(x)$ is continuous at $x=a$ just find $f(a)$
polynomials are smooth, continuous functions for all \times so this method can be used with polynomials. If $P(x)$ is a polynomial then:

$$
\lim _{x \rightarrow a} P(x)=P(a)
$$

Limits

Limits and continuous functions

- If $f(x)$ is continuous at $x=a$ then the

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

- this means that if a $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{a}$ then to find the limit of $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\mathbf{a}$ you only need to evaluate $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\mathbf{a}$.
i.e. to find $\lim _{x \rightarrow a} f(x)$ when $f(x)$ is continuous at $x=a$ just find $f(a)$
polynomials are smooth, continuous functions for all x so this method can be used with polynomials. If $\mathbf{P}(\mathbf{x})$ is a polynomial then:

$$
\lim _{x \rightarrow a} P(x)=P(a)
$$

Limits

Limits and continuous functions

- If $f(x)$ is continuous at $x=a$ then the

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

- this means that if a $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{a}$ then to find the limit of $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\mathbf{a}$ you only need to evaluate $\mathbf{f}(\mathbf{x})$ at $\mathrm{x}=\mathbf{a}$.
i.e. to find $\lim _{x \rightarrow a} \mathbf{f}(\mathbf{x})$ when $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{a}$ just find $\mathbf{f}(\mathbf{a})$.
polynomials are smooth, continuous functions for all x so this method can be used with polynomials. If $\mathbf{P}(\mathbf{x})$ is a polynomial then:

$$
\lim _{x \rightarrow a} P(x)=P(a)
$$

Limits

Limits and continuous functions

- If $f(x)$ is continuous at $x=a$ then the

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

- this means that if a $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{a}$ then to find the limit of $\mathbf{f}(\mathbf{x})$ at $\mathbf{x}=\mathbf{a}$ you only need to evaluate $\mathbf{f}(\mathbf{x})$ at $\mathrm{x}=\mathrm{a}$.
i.e. to find $\lim _{x \rightarrow a} \mathbf{f}(\mathbf{x})$ when $\mathbf{f}(\mathbf{x})$ is continuous at $\mathbf{x}=\mathbf{a}$ just find $\mathbf{f}(\mathbf{a})$.
- polynomials are smooth, continuous functions for all \mathbf{x} so this method can be used with polynomials. If $\mathbf{P}(\mathbf{x})$ is a polynomial then:

$$
\lim _{x \rightarrow a} P(x)=P(a)
$$

